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Abstract

Spatial relation between spatial objects is a very important topic for spatial reasoning, query and analysis in geographical

information systems (GIS). The most popular models in current use have fundamental deficiencies in theory. In this paper, a generic alge-

bra for spatial relations is presented, in which (i) appropriate operators from set operators (i.e. union, intersection, difference, difference
by, symmetric difference, etc.) are utilized to distinguish the spatial relations between neighboring spatial objects; (ii) three types of val-

ues are used for the computational results of set operations—content, dimension and number of connected components; and (iii) a spatial

object is treated as a whole but the Voronoi region of an object is employed to enhance its interaction with its neighbours. This algebra

overcomes the shortcomings of the existing models and it can effectively describe the relations of spatial objects.

Keywords: spatial relations, Voronoi-based algebra, spatial algebra, topological relations.

A formal theory of description and determination
for relations between spatial objects is usually impor-
tant to spatial query, analysis and reasoning in the
GIS field. For example, in the case of digital map
generalization, spatial relations between map objects
will be altered after applying generalization operations
displace-
ment, exaggeration and so on. These relations could
be metric and/or topological. Due to such changes,
spatial conflicts may be created by these operations

such as selective omission, aggregation,

and such conflicts need to be checked and resolved.
Recently, much attention has been paid to this top-
ic''). For such a purpose, appropriate mathematical
models for spatial relations are required.

The importance of spatial relations theory was

(23] Since then, many

recognized in the early 1980s
papers on this topic have been published by re-
searchers from the computing science and GIS com-
munities. The approaches used in these works can be

classified into two categories, i. e. decomposition-

based and whole-based™!.
object is represented in terms of the set of its compo-
nents, and relations are described and determined by
the combinatorial relations of those components. In

In the former, a spatial

the latter, the spatial object is considered as a whole,
and spatial relations between spatial objects are de-
scribed and determined by the interaction between

whole bodies of these objects instead of their compo-
nents.

In the category of decomposition-based ap-
proaches, most models are built upon point set topolo-
5~8
gy[ 1
a spatial object, i.e. interior, boundary and exterior,

. In these models, two or three components of

are utilized. The most fundamental one is the 4-inter-
section model!®’, making use of the interior and
boundary of a spatial object. Later, this model was
extended to a 9-intersection model'™®! in which the
exterior of a spatial object is also included. These
models have been implemented in raster mode!!!"!?],
through the use of vector representation for raster
cells. However, there is a fundamental deficiency in
theory for either 4- or 9-intersection models. The 9-
intersection model was later modified by Chen and his
collaborators! %]

replaced by its Voronoi region. However, the modi-

, with the exterior of a spatial object

fied model is still not generic enough.

In the category of the whole-based approach, the
main work includes the spatial logic model developed
by Randell et al.['*! and temporal logic model by
Allen'™). The former is built upon the calculus of in-
dividuals!*® which is in turn based on “region connec-
tion” ontology. In this model, a set of topological re-
lationships between concave regions is axiomatized.
Some other work based on Clarke’s region theory can
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(7] The main advan-

also be found in the literature
tage of such work rests in its rigorous logic so as to fa-
cilitate the mathematical deduction and proof. Such
models have mainly been applied to objects of regions
in the context of artificial intelligence. Allen’s tem-
poral logic relations model!®! was originally put for-
ward to handle two-dimensional temporal space but it
was later widely extended to higher dimensional

spacel #7211, Unfortunately, most of these models
are limited to the point-based abstraction of spatial

objects.

In spite of these efforts and progress made in the
last decade, it is undeniable that there are many im-
perfections associated with existing work, as will be
discussed in Section 2. In other words, the formal
description and determination of spatial relations are
still an open issue deserving further research, as
pointed out by Vasilis et al. 2]
ternative approach is proposed, i.e. an algebraic ap-

. In this paper, an al-

proach based on Voronoi regions. This is a whole-
based approach. In order to capture the interaction a-
mong whole objects, the Voronoi regions of spatial
objects are utilized.

1 The strategies used in this study

In order to develop an appropriate strategy for
this study, a critical examination of existing models
seems appropriate.

1.1 Fundamental deficiency in theory associated
with existing models

As mentioned in the previous section, in the de-
composition-based approach, a spatial object is de-
composed into several topological components such as
the interior and boundary. The interaction between
these object components determines the relations be-

tween spatial objects. Typical examples are the 4-in-

1[9]

tersection model*”- and its extension to the 9-intersec-

1101 However, there are many theoretical

1[13.5.23]

tion mode
problems associated with this mode

The fundamental deficiency in theory with the 4-
intersection model (Eq. (1)) is the inconsistency in
the definition of a line object. In 1-D space, the two
end points define the boundary of the line. However,
this definition is not valid any more in a 2-D space. If
one simply adopts this definition from a 1-D to 2-D
space, a topological paradox will be caused, i.e. inte-
rior meeting exterior, as shown in Fig. 1. This prob-

.24

lem was closely examined by Li et a and no fur-

ther explanation will be given.

AN B AN aB
R4<A,B>=( nNB ANBI )
9A N B 8A () aB
(a) Boundary\
SR\ Q)
Interior
Exterior
(b) Boundary
A (end points) Interior (line)
/
Exterior
4—(shaded
area)

Fig.1. Fundamental deficiency in theory associated with the 4-in-
tersection model, i. e. a topological paradox being caused. (a)
Topological components of a line in 1-D vector space; (b) topologi-
cal paradox is caused if the boundary definition of a line in 1-D is

simply adopted in 2-D space, i.e. interior meeting exterior.

The fundamental deficiency in theory with the 9-
intersection model (Eq. (2)) is the linear dependency
between the three topological components, i.e. inte-
rior, boundary and exterior (complement). That is,
for an object A, the interior A°, boundary 8A and
the complements A~ together form the complete
study space C. Mathematically, C= A%+ 8A + A~
or AT=C - (A%+ 5A). The model given by Egq.
(2) could then be written as Eq. (3). As the size of
a given study area is fixed, C is a constant. As a con-
sequence, the complement of an object is linearly de-
pendent on its interior and-boundary. Therefore, the
extension from the 4- to the 9-intersection model is

invalid.
A'NB° A°NaB A°N B~
Ry(A,B) = |6GANB" A N8B 8A N B~
ATNB° ATNeB A N B
(2)
Ro(A,B) =
A0 N BO A0 N aB A0 N (C- BY - 3B)
24 N BO 2A N 8B 5A N (C - BO ~ 3B)

(C-A'-24)NBY (C-AC-2a)NaB (C-A%-24)N (C- BY - aB)
(3)
To solve the linear dependency problem, Chen et
al. "3 have used the Voronoi regions of A and B to
replace their complement. However, the fundamental
problem associated with the definition of a line is still
unsolved.
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Now let us turn to the whole-based approaches.
The whole-based approach directly uses spatial objects
instead of their components for the description of spa-
tial relations, thus the problems associated with the
decomposition-based approach can be avoided. How-
ever, it is not sufficient to consider only objects them-
selves for distinguishing spatial relations!?® . Indeed,
many relations cannot be distinguished if only the ob-
jects themselves are used.

1.2 Strategies used in this study

For the reasons mentioned above, in this study,
the whole-based approach will be used as a basis. In

order to overcome the shortcomings of the whole-
based approach, an additional parameter should be in-
troduced and this parameter must meet the following
criteria: (i) being insensitive to the dimensionality of
space; and (ii) being closely related to the object so
as to have functions similar to those of boundary and
exterior.

As a result, the Voronoi region (Fig. 2) of an

object is selected, for it has many good proper-

[26,27]

ties . A Voronoi region or Thiessen polygon for

a point is the locus of points closer to that point than
[28]

to any other given one

Fig.2.
gions of spatial objects.

Another observation arising from the analysis of
existing literature is that, out of the many set opera-
tors, only the “intersection” operator has been uti-

[29) " This is per-

lized except for the work by Galton
haps the most expensive one in terms of computation.
There is no reason why other operators cannot be
used. Therefore, it is attempted to explore the full
range of set operators to constitute a spatial algebra

for the spatial relations.

In summary, the basic strategies adopted here
are; (i) a spatial object is treated as a whole; (ii) the
Voronoi region of an object is employed to enhance its
interconnection with neighbors; (iii) the appropriate
operators from set operators are utilized to distinguish
the spatial relations between neighboring spatial ob-
jects; and (iv) several types of values are used for the
computational results of set operations, e.g. content,
dimension and number of connected components and

SO on.

The Voronoi regions of a set of spatial objects and associated tessellation. Left: Voronoi regions of point sets; right; Voronoi re-

2 A spatial algebra for spatial relations: A
generalization

In this section, a number of set operators will be
employed and spatial concepts are embedded into the
algebra.

2.1

set operators

A spatial algebra for spatial relations based on

Spatial objects are often regarded as sets in space

in the context of GIS. This is very important as it .

means that objects can be manipulated by ordinary set
operators: union, intersection, set and symmetrical
differences, and so on. At the same time, spatial re-
lations can be considered as the result of handling
these “sets”. In fact, the theory of sets is the basis of
the description and determination of spatial relations;
in particular, topological relations can be regarded as
(301, Fig. 3 illustrates
working principles of set operators, using line and

detailed relations between sets

area objects as examples.
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Fig.3. Set operators for spatial objects.

From the viewpoint of algebra, these set opera-
tors together with spatial concepts (see sub-section
2.2) form an algebra, called the spatial algebra, for
spatial relations in this study. Let O denote the set of
all spatial objects, then the spatial relation, B (a,
b), between object a and object 4 in set O can be
represented by

B(a,b) = f(abb)

= flaUb,aNb,a\b,a/b,alb) (4)
where 6 denotes the above set of set operators, i.e.
=1U,N, \,/,A |, representing union, inter-
section, difference, difference by, symmetric differ-
ence, etc. If the desired relation can be sufficiently
described by one operator, then other operators may
be omitted. f is a function to take a type of value for
the results of set operations (see Eq. (4)).

Eq. (3) can be regarded as a simple spatial alge-
bra for the description of spatial relations. Spatial re-
lations can be distinguished on a coarse level with this
equation. For example, topological relations varying
from disjoint relations to equal relations between two
solid area objects can be determined by this equation,
see Section 4. However, this equation is not able to
describe some more detailed spatial relations. This is
because spatial relations are not only dependent on ob-
jects themselves but also on their surrounding space as
stated in the previous sections.

Currently, only the intersection operator is
widely used for the determination and description of
spatial relations, mainly topological relations and or-
der relations. In fact, some relations may be easily
distinguished by other operators but not by the inter-
section operator. Fig. 4 shows such an example
which illustrates the superiority of “difference” opera-
tor over intersection. It is clear that “overlap” and
“contained by” can be easily distinguished by their
“difference” but not their intersection.

Spatial configurations | Intersection (a &) | Difference (a \ &)

(W @ | €

) @ 2 (empty)

Fig.4. Results from “difference” and “intersection” operators.
(The former is able to distinguish “overlap” and “contain”, but the

latter is not) .

2.2 Three types of values for the results of set oper-
ators in the spatial algebra

The value of (afb) can take three different
forms, i.e. content, dimension, and the number of
connected components.

Fig. 5 shows these values in the case of intersec-
tion operation. “Content” is a quality measure, i.e.
either “empty” or “non-empty”. “Dimension” is a
either 0-dimensional
(point), 1-dimensional (line) or 2-dimensional. For

the case of “empty”, a dimensional number of ( —1)

quantitative measure, 1. e.

is usually used. “Number of connected components”
is quantitative measure at a finer level. In the case of
“empty”, the number is 0. Otherwise, the number
could be any integer larger than 0. For example, two

(@ b

(©) (d

Fig.5. Content, dimension and the number of components of in-
tersection operator. {a) empty intersection; (b) 0-dimensional in-
tersection with one connected component; (c) 1-dimensional inter-
section with one connected component; (d) 2-dimensional intersec-
tion with two connected components.
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objects “a” and “4” have 2-dimensional overlap with

two parts connected, as shown in Fig. 5(d).

Mathematically, the value of each element in the
(abb) set, say e, could be denoted by
|, — J1 if fis a function

to take content, donated by fc;

c {-1,0,1,2, 1 if fis a function to take
¢ dimension, donated by fp;
10,1,2,3, -} if fis a function to take

connected number, donated by fy.
(5)
As a result, a spatial relation shown in Fig.5(a)
could be represented as B(a, b) = fc(alb)=(—- &,
g, -, - &, -&), if B(a, b) takes content as
the type of value for the spatial algebra. If the result
of operators consists of multiple parts, then the high-
est dimension should be used for the value of the fp
(abb) function. In addition, a combination of dimen-
sion and connected number values could also be used
to form a value set, (fp, fn). For example, such a
set for Fig. 5(d) could be represented as B(a, &) =
((2,1),(2,2),(2,1),(2,1),(2,1)).

As the content, dimension and number represent
three different levels from coarse to fine, it is quite
possible that content is enough to represent a particu-
lar spatial relation. In such a case, it is unnecessary
to consider dimension or connected numbers. On the
other hand, it is also possible that a spatial relation
cannot be sufficiently described even if dimension is
used. In this case, connected number should also be

considered.

3 Voronoi-based spatial algebra for spatial
relations: Further extension

In the previous section, a simple spatial algebra
is developed for spatial relations. However, as will be
discussed later, some spatial relations will be confused
if only the spatial objects are used. In order to make
the spatial algebra more general, Voronoi regions of
spatial objects are introduced into the model expressed
in Eq. (1).

3.1 Voronoi region as a topological component of a
spatial object

Spatial relations essentially reflect the spatial

configuration between objects. In other words, for

individual object, the surrounding space must also be
taken into account in addition to the surrounding ob-
jects if sound models for spatial relations are to be de-
veloped. The role of Voronoi region in this study
serves the purpose of tightening the inter-relation a-
mong a spatial object and its neighbouring objects and

space.

A Voronoi region describes the spatial proximity
or influent region of a spatial object. The Voronoi re-
gions of all spatial objects together will form a tessel-
lation of space. This tessellation is called Voronoi dia-
gram. There are also other names but such discussion
and other topics could be found elsewhere!?’). The
dual graph is the well-known Delaunnay triangulation
network in GIS and computational geometry. Fig. 2
illustrates Voronoi regions, Voronoi diagram and the
corresponding Delaunnay triangulation of a point set.
Fig. 6 shows Voronoi regions of two objects with two

different kinds of spatial configurations.

Fig. 6.
tions. {a) Touch (meet); (b) overlap.

Voronoi regions of spatial objects with complex configura-

It is clear that the Voronoi region of a spatial ob-
ject could serve for two purposes, i.e. to connect spa-
tial objects together to form a space tessellation, and
to serve as a confined exterior of the spatial object at
the same time. Therefore, Voronoi region is intro-

duced into the spatial algebra for spatial relations.

3.2 Voronoi-based spatial algebra: further exten-

sion

Let a " be the Voronoi region of spatial object a
and 6" be the Voronoi region of spatial object &, then
the spatial relation B(a, ) between object @ and ob-
ject b can be listed in Table 1 concisely, which can be

expanded into a matrix form as in Table 2.

Table 1. The concise representation of the new algebraic model
B(a,b)=F(A"6B) b 6Y

a (abb) (aVopY)

aV (aVob) (aV6p"Y)
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Table 2. The extended form of the algebraic model based on Voronoi

regions
Bla,b)=F(AT6B)  (a,b) (a,b") (a",b) (a¥,b")
Union U alb  aUsY aYUsY aVUsY
Intersect () aNe  aNeY a¥NeY a¥NsY
Difference \ a\bd a\bY¥ a¥\ &Y aV\ Y
Difference by / alb a/b¥  a¥/6Y aV/eY

Symmetric difference A alb arby  a¥apY  aVARY

Mathematically, let A = [a, a”] and B =
[b,5V], then the relations could be described by the
following equation :

B(a,b)= F(A'0B) = F{[a,av1"0[b,6"]}
(abb) (a@bv) (6)
(aVOb) (aVopY)

where, F is a function similar to the f in Eq. (4).
Generally speaking, the following function is suffi-
clent:

B'(a,b) = F{(abb),(avo6")| (7

In practice, if a spatial relation can be sufficient-
ly described by (afb), the other operand, i. e.
(aV0bY), may be ignored. As a result, spatial rela-
tions can be described in a flexible manner.

4 Topological relations with the spatial alge-
bra

4.1 Assumptions used in the algebra

In fact, not all the values of Eq. (6) and/or
Table 2 are valid in practical applications. A number
of assumptions can be made for the determination of
the useful values in Eq. (6), and Tables 1 and 2.
These assumptions are formulated by considering a
number of factors, i.e. the properties of spatial ob-
jects, the embedding space, the relations between se-
lected operators in the model and so on. These as-
sumptions are listed as follows: (i) spatial objects are
embedded in Euclidean space; and (ii) a spatial object
has only one connected component.

4.2 Topological relations between simple area and
line objects '

The topological relations between simple area ob-
jects are illustrated in Table 3. The topological rela-
tions between simple lines are illustrated in Table 4 in
the matrix form with multiple operators. Here, in or-
der to distinguish the “meet” and “intersect” relations
between lines, the value of the connected components
of (aVobV) is used. In fact, different types of
“meet” relations can also be distinguished by this op-

eration. It is noted that the kinds of relations listed in
Table 4 are very difficult for other models to distin-
guish.

Table 3. Topological relations between solid area objects
(a) Basic relations between solid area by empty/non-empty

fc alUblaNbla\ bla/b|alb

Semantic

Disjoint

Meet/ Qverlap

~@Z| - - |-&|-F| Contain/Cover

- -3 - |- 3| T Contained/ Covered

-B|-Z| -3 |-3|-2 Equal

(b) Further discrimination of meet/overlap with the simple model by di-

mensions
fo alUblaNbla\ bla/b|adb Semantic
2 0 2 2 2 0-D meet
2 1 2 2 2 1-D meet
2 2 2 2 2 Overlap
|

(¢) Further discrimination of contain/cover and contained/covered with

the general model

F aUb | aNd | a\? a/b alb S .
c 2VUBYaVNBYaY A 8V aV/aV | uVabY ermantic
-gl-g|-g| 2 | -2
Cover
gl -gl-z| & e
—g | -p| -2 > &
Contain
- I oy > s
- -2 2 |-g| -2
Covered
g | - & P
x| -z & S
Contained
- | & o -z | -z
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Table 4.  Topological relations between simple lines Table 5. Topological relations between areas and lines
(a) Level 1: basic relations with the simple model by empty/non-empty aUs | aNb | a\Nb | a/b | atd
Fp v v v v v Semantic
fo aUb | aNb |a\b | a/b | alb Semantic EMSEMIMALA AN MMM PALY)
>-1 -1 >-1{>-1|>-1
L Disjoint
>-1{ - —1{>-1]>-
| I 1 1 (>-1 1{>-1 Disjoint 2 I>=-1 2 2 2
>-1>-11>-1 -1 >-1
e — Contain
* >-1| 0 |>-1[>~1|>-1| Meet/Intersect 2 -1 2 -1 2
>-1 0 >-1|>-1|>-1
——— >-1 1 >0 >0 >0 Overlap 0-D meet
2 1 2 2 2
e v >-1|>-1|>-1| -1 {>-1 Contain
> -1 1 >-1{>-1]>-1
— > 1]>-1] -1 |>-1|>-1| Contained 1-D meet
2 2 2 2 2
_— >-1|>-1| -1 | -1 -1 Equal >l 1 | >oil>-11>-1
—.—/ Intersect
(b) Level 2: the description of meet/intersect with the general model 2 1 2 2 2
F aUb | aNb [ a\Nb | a/b | alb Semanti > 1]>-1l>-1]>-1]>-1
N mantic - - - - -
VUsVeVN YV 8V eV e VasY .
Contained
a 1 .1 i 1 2 2 -1 -1 2 2
'b 7 Meet at ends
1 2 1 1 2

Table 6. Topological relations between points and lines

b=
—
—
3]
-
w

Meet at b’s end|
and a’s middle

&.i

Meet at a"s end|
and b’s middle

-‘“_'
o

—

[ ]

-

-

IS

Meet at middles|

>
-
[ &)
-
-
[ S )

Intersect

4.3 Topological relations between simple objects
with different dimensions

Topological relations between simple objects with
different dimensions here mainly refer to those be-
tween areas and lines, areas and points and lines with
points. In fact, the distinction of relations between
lines and areas can be realized without the“aid of such
notions as interior, exterior and boundary. This is an
important characteristic of this model, which makes
its realization easy and practical in either raster space

or rector space. These relations are illustrated in Ta-
bles 5~7.

fe 1 alUblaNbla\b| a/b | ald Semnantic
@ -g| g |\-2|-2|-2 Disjoint
g o]
_® ~F|-F|~@| & |-F| Contain
N o -@|-2| @ |-2|-B| Contained

Table 7. Topological relations between points and areas
Je aUblaNbla\b| a/b | alb Semantic
b
® -9\ 2 |-2|-Z|-2| Dipomt
b .
-\ -\ -2 & | -2 Contain
‘ -2 |-2| @ |-2|-2 Contained

4.4 Topological relations between complex objects

The description of spatial relations among loop
line objects has been a difficult task and there is a lack
of efficient solutions. But this kind of relation may al-
so be distinguished by the new approach. In order to
describe this kind of relation, the value of combina-
tion of dimension and connected number of (afb) as
well as the value of connected number of (aV8b"V) is
employed. The result is shown in Table 8.
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Table 8.  Spatial relations between loop line objects

(Fp, Fx) alb aNé | a\b | a/b | atb .
Fn a'UsY | a"NeY [a"\8Y| a¥/8" | a¥As” te
(1,2) (-1, -1) (1,1) | (1,1) | (1,2)
Disjoint
3 1 2 2 4
e . (L1 | (1) | (L1 | (11 ] (1,2)
"‘: 3 Interior meel
i F 3 1 2 2 4
(LD | 1D | QDA ]a,2)
Exterior meet
3 2 2 2 4
1, | 02y | L2 | 1L2) ] 1,9
Exterior meet
5 3 3 3 6
1,1 0,2) | (1,2) | (1,2) | (1,4)
Intersect
5 5 4 4 8
Ly | (LD | Q| an| a2
3 2 2 2 4

(> -1, 1> -1, D(-LD[(-1,D[(-,»|
O Equal
2 2 -1 -1 -1

Using the new approach without other exten-
sion, the distinction of complex relations between
area objects can also be realized, including various
“inside” relations.

5 Conclusions

In this paper, a novel approach for the descrip-
tion of spatial relations is employed. [t consists of
three strategies as follows: (i) appropriate operators
from set operators (i.e. union, intersection, differ-
ence, difference by, symmetric difference, etc.) are
utilized to distinguish the spatial relations between
neighbouring spatial objects; (ii) three types of val-
ues are used for the computational results of set opera-
tions—content, dimension and number of connected
components; (iii) a spatial object is treated as a whole
but the Voronoi region of an object is employed to en-
hance its interaction with its neighbours.

This approach combines the advantages of both
the decomposition-based and whole-based approaches.
With this strategy, a generic algebraic model is devel-
oped to distinguish and determine spatial relations be-
tween objects in geographical databases. Such a model
includes mainly three integrands, i.e. spatial objects
themselves, their Voronoi regions, and proper set op-
erators. Spatial objects here mainly refer to points,

lines and areas in planar space. They can be consid-
ered as basic spatial data types and fundamental ab-
stractions in modelling spatial databases. The set op-
erators are primitive operations in GIS, especially in
raster-based systems. From a theoretical point of
view, this model is a more general model than exist-
ing models based on both the whole-based and decom-
position-based approaches. It also overcomes the fun-
damental deficiencies in theory associated with exist-
ing models. With this model, spatial relations can be
described hierarchically from coarse to detailed level
with the aid of Voronoi regions as well as the three
types of values. This model is also able to discrimi-
nate the “disjoint” relation with a higher resolution.
From a practical viewpoint, using this approach, the
integration of the description and computation of spa-
tial relations in both vector and raster space is realized
in a natural way.
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